GIS Hydropower Resource Mapping and Climate Change Scenarios for the ECOWAS Region
Title: GIS Hydropower Resource Mapping and Climate Change Scenarios for the ECOWAS Region, Country Report for Benin

Publisher: ECOWAS Centre for Renewable Energy and Energy Efficiency (ECREEE), Praia, Cabo Verde. All results and maps are published on the ECOWAS Observatory for Renewable Energy and Energy Efficiency - www.ecowrex.org/smallhydro
Contact: info@ecreee.org

March 2017

Program Responsibility:

The ECOWAS Small-Scale Hydropower Program was approved by ECOWAS Energy Ministers in 2012. In the frame of this program ECREEE assigned Pöyry Energy GmbH in 2015 for implementation of a GIS Hydro Resource Mapping and Climate Change Scenarios in ECOWAS countries with Hydropower potentials. One deliverable of this project are 14 country reports summarizing the GIS Hydro Resource mapping and climate change scenarios. The overall methodology background information and lessons learnt of these Country Reports are described in the final report “GIS Hydropower Resource Mapping and Climate Change Scenarios for the ECOWAS Region - Methodology & Lessons Learnt.”
www.ecowrex.org/smallhydro

Project Team:

Pöyry Energy GmbH, Vienna, Austria
Mr. Harald Kling (project management, team leader hydrology)
Mr. Martin Fuchs (team leader hydropower)
Mr. Philipp Stanzel (team leader climate change)
Ms. Maria Paulin
Mr. Bernhard Wipplinger
Mr. Stefan Wimmer
Ms. Elisabeth Freiberger
Mr. Christoph Libisch
Mr. Raimund Moller
Mr. Rudolf Faber
Mr. Herbert Weilguni

ECOWAS Centre for Renewable Energy and Energy Efficiency, Praia, Cabo Verde
Mr. Mahama Kappiah, Executive Director
Mr. Hannes Bauer, Project Management, Lead hydropower Program
Mr. Daniel Paco, GIS Expert

The ECOWAS Small-Scale Hydropower Program is managed by:
ECOWAS Centre for Renewable Energy and Energy Efficiency (ECREEE)
Mr. Hannes Bauer, ECREEE
Contact: info@ecreee.org

Project Funding

Austrian Development Cooperation – ADC
Spanish Ministry of External Affairs and Cooperation - AECID
PREFACE

The 15 countries of the Economic Community of West African States (ECOWAS) face a constant shortage of energy supply, which has negative impacts on social and economic development, including also strongly the quality of life of the population. In mid 2016 the region has about 50 operational hydropower plants and about 40 sites are under construction or refurbishment. The potential for hydropower development – especially for small-scale plants – is assumed to be large, but exact data were missing in the past.

The ECOWAS Centre for Renewable Energy and Energy Efficiency (ECREEE), founded in 2010 by ECOWAS, ADA, AECID and UNIDO, responded to these challenges and developed the ECOWAS Small-Scale Hydropower Program, which was approved by ECOWAS Energy Ministers in 2012. In the frame of this program ECREEE assigned Pöyry Energy GmbH in 2015 for implementation of a hydropower resource mapping by use of Geographic Information Systems (GIS) for 14 ECOWAS member countries (excluding Cabo Verde). The main deliverable of the project is a complete and comprehensive assessment of the hydro resources and computation of hydropower potentials as well as possible climate change impacts for West Africa. Main deliverables of the GIS mapping include:

- River network layer: GIS line layer showing the river network for about 500,000 river reaches (see river network map below) with attributes including river name (if available), theoretical hydropower potential, elevation at start and end of reach, mean annual discharge, mean monthly discharge, etc.
- Sub-catchment layer: GIS polygon layer showing about 1000 sub-catchments with a size of roughly 3000 km². This layer summarizes the data of all river reaches located within the sub-catchment.

Hydropower plants are investments with a lifetime of several decades. Therefore, possible impacts of climate change on future discharge were incorporated into the river network and sub-catchment GIS layers. The GIS layers are available in the ECREEE Observatory for Renewable Energy and Energy Efficiency (www.ecowrex.org).

This report summarizes the results of the GIS layers for Benin and includes:

- General information
- Climate
- Hydrology
- Hydropower potential
- Climate change
GENERAL INFORMATION

Benin is one of the smaller countries in West Africa and has about 11 Mio inhabitants. The capital of Benin is Porto Novo. The neighboring countries are Togo in the west, Burkina Faso in the north-west, Niger in the north and Nigeria in the east (see map below).

Hydropower currently plays no significant role for energy generation in Benin, as there are no existing hydropower plants with an installed capacity greater than 1 MW (see table below).

![Map of Benin and neighboring countries](image-url)

<table>
<thead>
<tr>
<th>General Information for Benin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhabitants (2013)</td>
</tr>
<tr>
<td>Area (2013)</td>
</tr>
<tr>
<td>GDP per capita (2013)</td>
</tr>
<tr>
<td>Electrification rate total/urban/rural (2012)</td>
</tr>
<tr>
<td>Hydro installed capacity (2013)</td>
</tr>
<tr>
<td>Electricity generation (2013)</td>
</tr>
<tr>
<td>Electricity generation from hydropower (2013)</td>
</tr>
<tr>
<td>Number of existing hydropower plants with installed capacity > 1 MW (2016)</td>
</tr>
<tr>
<td>Number of existing small hydropower plants with installed capacity 1-30 MW (2016)</td>
</tr>
<tr>
<td>Number of existing medium hydropower plants with installed capacity 30-100 MW (2016)</td>
</tr>
<tr>
<td>Number of existing large hydropower plants with installed capacity >100 MW (2016)</td>
</tr>
</tbody>
</table>

Source: ECOWAS Country Profiles (www.ecowrex.org)
Reference year given in brackets.
The climate in West Africa can be grouped into six zones with distinctive seasonal rainfall patterns (L’Hôte et al., 1996). In Benin the climate ranges from “Transitional equatorial” in the south, over “Transitional tropical” in the central parts, to “Pure tropical” in the north. The diagrams below summarize the mean monthly rainfall and air temperature in these climate zones.
HYDROLOGY

The Oueme River is the largest river in Benin. About 43 % of the country is located in the Oueme basin, which discharges to the south into the Gulf of Guinea. Rivers in the northern part of the country discharge to the north and east and are tributaries of the Niger River. Overall 39 % of the country is located in the Niger basin. Other regions of the country belong to the Volta and Couffo basins (see map and table below).

The figures on the following page illustrate the annual and seasonal variations in discharge for the Oueme River, the Sota River and the Zou River.

All three rivers show strong variations in annual discharge over the last 60 years. Some extremely dry years occurred in the 1980s, whereas the period 1998-2014 represents moderately wet conditions in the historic context.

There is strong seasonality in discharge, with high flows from August to October during the rainy season. Some of the rivers fall dry between February and April.

<table>
<thead>
<tr>
<th>Basins</th>
<th>Percentage of country's area located in the four largest river basins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Couffo basin</td>
<td>3.0 %</td>
</tr>
<tr>
<td>Niger basin</td>
<td>38.7 %</td>
</tr>
<tr>
<td>Oueme basin</td>
<td>42.5 %</td>
</tr>
<tr>
<td>Volta basin</td>
<td>13.1 %</td>
</tr>
</tbody>
</table>
Historic Variation in Annual Discharge

Oueme River at Bonou

Year

Discharge [m³/s]

Sota River at Couberi

Year

Discharge [m³/s]

Zou River at Atcherigbe

Year

Discharge [m³/s]

Average 1998-2014

Seasonality in Discharge

Oueme River at Bonou

Year
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Mean Discharge [m³/s]

Sota River at Couberi

Year
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Mean Discharge [m³/s]

Zou River at Atcherigbe

Year
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Mean Discharge [m³/s]
Annual Water Balance

The long-term mean annual water balance describes the partitioning of precipitation (rainfall) into actual evapotranspiration (transpiration by plants, evaporation from soil) and runoff, as over long time periods the change in storage (soil moisture, ground water) can be assumed to be negligible for the mean annual water balance.

The regional distribution of the water balance components in West Africa is strongly controlled by spatial variations in mean annual precipitation. An annual water balance model calibrated with observed discharge data of 400 gauges was used to determine mean annual actual evapotranspiration and runoff for the period 1998-2014, as shown in the maps below. In most parts of West Africa mean annual actual evapotranspiration is considerably larger than mean annual runoff.

This is also the case for the mean annual water balance in Benin. In the southern parts of the country about 90 % of rainfall is lost via evapotranspiration and only about 10 % of rainfall generates runoff. This is even more extreme in the northern parts of the country, where about 95 % of rainfall is lost via evapotranspiration and only about 5 % of rainfall generates runoff.

Mean annual discharge is computed by aggregating runoff along the river network, which together with channel slope determines the hydropower potential (see next section).
HYDROPOWER POTENTIAL

The theoretical hydropower potential of a river is defined as the amount of power that would be produced if the full head of the river was used and if 100 % of the mean annual discharge was turbinated (i.e. no spillway losses or environmental flow constraints). In this study overall plant efficiency (turbines, hydraulic losses) is assumed with 87 %.

The theoretical hydropower potential for Benin is estimated to be 749 MW (reference period 1998-2014), which is the total of all rivers in the country.

The following table and figure show how the total potential of the country is subdivided into theoretical potential for hydropower plants (HPP) of different plant size. A classification scheme based on mean annual discharge (m³/s) and specific hydropower potential (MW/km) was applied to determine the preferred plant size for river reaches with a typical length of 1 to 10 km. Four classes were considered for the preferred plant size, including pico/micro/mini HPP (< 1 MW installed capacity), small HPP (1-30 MW installed capacity), medium/large HPP (> 30 MW installed capacity), and “No attractive potential” for river reaches with too low specific hydropower potential. For the latter in some cases it may still be worthwhile to utilize this potential in e.g. multi-purpose schemes. The technical potential was not assessed in this study.

Theoretical Hydropower Potential

Benin: 749 MW

<table>
<thead>
<tr>
<th>Class</th>
<th>Potential (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pico/micro/mini HPP</td>
<td>5</td>
</tr>
<tr>
<td>Small HPP</td>
<td>90</td>
</tr>
<tr>
<td>Medium/large HPP</td>
<td>239</td>
</tr>
<tr>
<td>No attractive potential</td>
<td>415</td>
</tr>
<tr>
<td>Total of all rivers in country</td>
<td>749</td>
</tr>
<tr>
<td>Total of rivers with attractive theoretical potential for pico/micro/mini, small, or medium/large HPP</td>
<td>334</td>
</tr>
</tbody>
</table>
Longitudinal Profiles of Selected Rivers

The following graphs show longitudinal profiles of the Oueme, Sota and Zou rivers, plotting elevation (red) and mean annual discharge (blue) from the source to the mouth of the river. Inflow from tributaries is clearly identifiable as sudden increase in river discharge. The background color indicates if a river reach has an attractive theoretical hydropower potential for pico/micro/mini HPP (< 1 MW installed capacity), small HPP (1-30 MW installed capacity), or medium/large HPP (> 30 MW installed capacity).
Hydropower Potential in Selected Sub-catchments

The following maps and tables give information about the theoretical hydropower potential of selected sub-catchments in Benin. Sub-catchments with attractive theoretical hydropower potential are found in the south-east and north-west of Benin.

The table data summarizes the total theoretical hydropower potential of all river reaches within the sub-catchment. River reaches were grouped according to preferred plant size for pico/micro/mini HPP (< 1 MW installed capacity), small HPP (1-30 MW installed capacity), or medium/large HPP (> 30 MW installed capacity). Similarly, the color code of the river network displayed in the maps indicates the preferred plant size. A grey color indicates no attractive potential for hydropower development.
This sub-catchment is located at the lower stretches of the Okpara River, which forms the border with Nigeria. There is considerable theoretical potential for small HPP and medium/large HPP at the Okpara River and also at the Oueme River in the south.

This sub-catchment of the Oueme River also includes the lower stretches of the Zou River. There is some theoretical potential for small HPP at the Zou River and considerable potential for medium/large HPP at the Oueme River.
This sub-catchment in the north of Benin forms the headwater region of the Pendjari River. There is some theoretical potential for pico/micro/mini HPP and for small HPP. However, the northern part of the sub-catchment lies in the Parc National de la Pendjari.

This sub-catchment of the Koumango River is shared with Togo. There is considerable theoretical potential for pico/micro/mini HPP and small HPP at the two main tributaries of the Koumango River (one is located in Togo).
This headwater sub-catchment of the Koumango River is shared with Togo. It shows considerable theoretical potential for pico/micro/mini HPP and small HPP, but parts of the small HPP potential are found in the Forêt du Mont Amolo.

Theoretical Hydropower Potential of Rivers in Sub-Catchment #824

<table>
<thead>
<tr>
<th>Size Type</th>
<th>Potential (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pico/micro/mini HPP</td>
<td>2.7</td>
</tr>
<tr>
<td>Small HPP</td>
<td>26.9</td>
</tr>
<tr>
<td>Medium/large HPP</td>
<td>0</td>
</tr>
</tbody>
</table>

Map overlays

- **Pico/micro/mini HPP**
- **Small HPP**
- **Medium/large HPP**
- **No attractive potential**
- **Existing hydropower plant**
- **Lake or reservoir**
- **Sub-catchment boundary**
- **Country border**
CLIMATE CHANGE

Climate change may have considerable impact on future water resources and thus hydropower generation. The following figures show an assessment of climate change projections for West Africa based on 15 Regional Climate Models of the CORDEX-Africa ensemble. Two Representative Concentration Pathways (RCP4.5 and RCP8.5) were considered, thus yielding a total of 30 climate model runs. Future runoff was simulated by driving a water balance model with precipitation and temperature climate change signals with respect to the reference period 1998-2014.

Projections for the Near Future 2026-2045
Projections for the Far Future 2046-2065

The maps below show the expected impact of climate change on future mean annual water resources. From the 30 climate model runs the median result was computed to generate the maps, which show change signals comparing the future periods 2026-2045 (previous page) and 2046-2065 (this page) vs. the reference period 1998-2014.

In large parts of West Africa increase or almost no change is projected for future precipitation. This is also the case for Benin. The combined effects of future precipitation and considerable warming (which affects evapotranspiration) were simulated with a water balance model to compute future runoff. In Benin a slight decrease is projected for future runoff (median of 30 model runs). The same applies to river discharge.
Projected Change in Discharge for Selected Gauges

Future mean annual discharge was estimated with data from 30 different climate model runs. Boxplots are presented to summarize the spread in the simulation results (see explanation at right).

For rivers in Benin the uncertainty in the climate model projections is rather high, as both increase and decrease is projected by different climate models for the same river.

For the Oueme and Sota rivers there is a tendency of climate models to project a decrease in future discharge, whereas for the Zou River an equal number of climate models project decrease and increase.

Overall the climate change impact assessment shows that given the projections with the most detailed climate models currently available (CORDEX-Africa) there is no clear signal for pronounced changes in future discharge in Benin. This means that climate change is not a ‘worst-case’ scenario for hydropower development in Benin.
ACKNOWLEDGEMENTS

This study was conducted by Pöyry Energy GmbH (Vienna, Austria) for the ECOWAS Centre for Renewable Energy and Energy Efficiency (ECREEE, Praia, Cabo Verde). This is a contribution to the ECOWAS Small-Scale Hydro Power Program, which aims to develop the small-scale hydropower sector in West Africa and is funded by the Austrian Development Agency (ADA) and the Spanish Agency for International Development Cooperation (AECID).

Observed discharge data were used for hydrological model calibration and were obtained from the following sources: Global Runoff Data Centre (GRDC), Volta Basin Authority, Niger Basin Authority, Senegal & Gambia Basin Authorities (OMVS, OMVG), Liberia National Hydrological Service, Sierra Leone National Hydrological Service, Japan International Cooperation Agency (JICA).

Precipitation data 1998-2014 are based on Tropical Rainfall Measurement Mission (TRMM 3B42 v7). Additional precipitation data 1950-2010 for model calibration were obtained from the Global Precipitation Climatology Centre (GPCC). Air temperature and potential evapotranspiration data were obtained from the Climatic Research Unit (CRU, Univ. East Anglia), with additional data from the CLIMWAT database of FAO. River network and elevation data were derived from the Hydrosheds dataset (USGS). Climate model data were obtained from the Coordinated Regional Downscaling Experiment for Africa (CORDEX-Africa), which is a project of the World Climate Research Program.
