# SENEGAL SCOUNTRY REPORT GIS Hydropower Resource Mapping and Climate Change Scenarios for the ECOWAS Region #### **Imprint** **Title:** GIS Hydropower Resource Mapping and Climate Change Scenarios for the ECOWAS Region, Country Report for Senegal **Publisher:** ECOWAS Centre for Renewable Energy and Energy Efficiency (ECREEE), Praia, Cabo Verde. *All results and maps are published on the ECOWAS Observatory for Renewable Energy and Energy Efficiency - www.ecowrex.org/smallhydro* Contact: info@ecreee.org March 2017 #### **Program Responsibility:** The ECOWAS Small-Scale Hydropower Program was approved by ECOWAS Energy Ministers in 2012. In the frame of this program ECREEE assigned Poyry Energy GmbH in 2015 for implementation of a GIS Hydro Resource Mapping and Climate Change Scenarios in ECOWAS countries with Hydropower potentials. One deliverable of this project are 14 country reports summarizing the GIS Hydro Resource mapping and climate change scenarios. The overall methodology background information and lessons learnt of these Country Reports are described in the final report "GIS Hydropower Resource Mapping and Climate Change Scenarios for the ECOWAS Region - Methodology & Lessons Learnt." www.ecowrex.org/smallhydro #### **Project Team:** #### Pöyry Energy GmbH, Vienna, Austria Mr. Harald Kling (project management, team leader hydrology) Mr. Martin Fuchs (team leader hydropower) Mr. Philipp Stanzel (team leader climate change) Ms. Maria Paulin Mr. Bernhard Wipplinger Mr. Stefan Wimmer Ms. Elisabeth Freiberger Mr. Christoph Libisch Mr. Raimund Mollner Mr. Rudolf Faber Mr. Herbert Weilguni #### ECOWAS Centre for Renewable Energy and Energy Efficiency, Praia, Cabo Verde Mr. Mahama Kappiah, Executive Director Mr. Hannes Bauer, Project Management, Lead hydropower Program Mr. Daniel Paco, GIS Expert #### The ECOWAS Small-Scale Hydropower Program is managed by: ECOWAS Centre for Renewable Energy and Energy Efficiency (ECREEE) Mr. Hannes Bauer, ECREEE Contact: info@ecreee.org #### **Project Funding** Austrian Development Cooperation – ADC Spanish Ministry of External Affairs and Cooperation - AECID #### **PREFACE** The 15 countries of the Economic Community of West African States (ECOWAS) face a constant shortage of energy supply, which has negative impacts on social and economic development, including also strongly the quality of life of the population. In mid 2016 the region has about 50 operational hydropower plants and about 40 sites are under construction or refurbishment. The potential for hydropower development – especially for small-scale plants – is assumed to be large, but exact data were missing in the past. The ECOWAS Centre for Renewable Energy and Energy Efficiency (ECREEE), founded in 2010 by ECOWAS, ADA, AECID and UNIDO, responded to these challenges and developed the ECOWAS Small-Scale Hydropower Program, which was approved by ECOWAS Energy Ministers in 2012. In the frame of this program ECREEE assigned Pöyry Energy GmbH in 2015 for implementation of a hydropower resource mapping by use of Geographic Information Systems (GIS) for 14 ECOWAS member countries (excluding Cabo Verde). The main deliverable of the project is a complete and comprehensive assessment of the hydro resources and computation of hydropower potentials as well as possible climate change impacts for West Africa. Main deliverables of the GIS mapping include: - River network layer: GIS line layer showing the river network for about 500,000 river reaches (see river network map below) with attributes including river name (if available), theoretical hydropower potential, elevation at start and end of reach, mean annual discharge, mean monthly discharge, etc. - Sub-catchment layer: GIS polygon layer showing about 1000 sub-catchments with a size of roughly 3000 km². This layer summarizes the data of all river reaches located within the sub-catchment. Hydropower plants are investments with a lifetime of several decades. Therefore, possible impacts of climate change on future discharge were incorporated into the river network and sub-catchment GIS layers. The GIS layers are available in the ECREEE Observatory for Renewable Energy and Energy Efficiency (www.ecowrex.org). This report summarizes the results of the GIS layers for Senegal and includes: - General information - Climate - Hydrology - Hydropower potential - Climate change ## **GENERAL INFORMATION** Senegal is the western most country of West Africa with a total population of 15 Mio inhabitants. The capital of Senegal is the coastal city of Dakar. The neighboring countries are Mauritania in the north, Mali in the east, Guinea-Bissau in the south, as well as The Gambia, which is enclosed by Senegal (see map below). Hydropower is not important for electricity generation in Senegal. There are no small hydropower plants (1-30 MW installed capacity) in Senegal. At the Gambia River the Sambangalou hydropower plant is under construction. | General Information for Senegal | | |--------------------------------------------------------------------------------------|-------------| | Inhabitants (2014) | 14.7 Mio. | | Area (2014) | 196,710 km² | | GDP per capita (2014) | 1,067 USD | | Electrification rate total/urban/rural (2012) | 42/70/21 % | | Hydro installed capacity (2013) | 75 MW | | Electricity generation (2013) | 3,711 GWh | | Electricity generation from hydropower (2013) | 308 GWh | | Number of existing hydropower plants with installed capacity > 1 MW (2016) | 1 | | Number of existing small hydropower plants with installed capacity 1-30 MW (2016) | 0 | | Number of existing medium hydropower plants with installed capacity 30-100 MW (2016) | 0 | | Number of existing large hydropower plants with installed capacity >100 MW (2016) | 1 | Source: ECOWAS Country Profiles (www.ecowrex.org) Reference year given in brackets. ## **CLIMATE** The climate in West Africa can be grouped into six zones with distinctive seasonal rainfall patterns (L'Hôte et al., 1996). In Senegal the climate ranges from "Transitional tropical" in the south, "Pure tropical" and "Semiarid tropical" in the centre, to "Semiarid desert" in the north. The diagrams below summarize the mean monthly rainfall and air temperature in these climate zones. #### **HYDROLOGY** The Senegal River is the largest river in the Republic of Senegal. The Senegal River flows along the northern border with Mauretania. Almost 40 % of the country is located in the Senegal basin. The Faleme River is a major tributary of the Senegal River and forms large portions of the eastern border with Mali. The Gambia River traverses the southern part of the country and overall 27 % of the country's area belongs to the Gambia basin (see map and table below). Both the Senegal River and Gambia River have their headwater regions in the Fouta Djallon highlands in neighbouring Guinea. The figures on the following page illustrate the annual and seasonal variations in discharge for the Gambia River, Senegal River and Faleme River. At all three rivers flows were higher in the 1950s and 1960s than in more recent periods such as 1998-2014. All three rivers also show similar seasonality in discharge with high flows between August and October and low flows between January and June # **Historic Variation in Annual Discharge** # **Seasonality in Discharge** #### **Annual Water Balance** The long-term mean annual water balance describes the partitioning of precipitation (rainfall) into actual evapotranspiration (transpiration by plants, evaporation from soil) and runoff, as over long time periods the change in storage (soil moisture, ground water) can be assumed to be negligible for the mean annual water balance. The regional distribution of the water balance components in West Africa is strongly controlled by spatial variations in mean annual precipitation. An annual water balance model calibrated with observed discharge data of 400 gauges was used to determine mean annual actual evapotranspiration and runoff for the period 1998-2014, as shown in the maps below. In most parts of West Africa mean annual actual evapotranspiration is considerably larger than mean annual runoff. This is also the case for the mean annual water balance in the Republic of Senegal. In the southern parts of the country about 85 % of rainfall is lost via evapotranspiration and only about 15 % of rainfall generates runoff. This is even more extreme in the central and northern parts of the country, where less than 5 % of rainfall generates runoff and the rest is lost via evapotranspiration. Mean annual discharge is computed by aggregating runoff along the river network, which together with channel slope determines the hydropower potential (see next section). Copyright © Pöyry Energy GmbH, ECREEE (www.ecowrex.org) #### HYDROPOWER POTENTIAL The theoretical hydropower potential of a river is defined as the amount of power that would be produced if the full head of the river was used and if 100 % of the mean annual discharge was turbinated (i.e. no spillway losses or environmental flow constraints). In this study overall plant efficiency (turbines, hydraulic losses) is assumed with 87 %. The theoretical hydropower potential for the Republic of Senegal is estimated to be 253 MW (reference period 1998-2014), which is the total of all rivers in the country. For river sections forming international borders (Senegal, Faleme) only half of the river section's hydropower potential is accounted for in the total potential of the Republic of Senegal. The following table and figure show how the total potential of the country is subdivided into theoretical potential for hydropower plants (HPP) of different plant size. A classification scheme based on mean annual discharge (m³/s) and specific hydropower potential (MW/km) was applied to determine the preferred plant size for river reaches with a typical length of 1-10 km. Four classes were considered for the preferred plant size, including pico/micro/mini HPP (< 1 MW installed capacity), small HPP (1-30 MW installed capacity), medium/large HPP (> 30 MW installed capacity), and "No attractive potential" for river reaches with too low specific hydropower potential. For the latter in some cases it may still be worthwhile to utilize this potential in e.g. multi-purpose schemes. The technical potential was not assessed in this study. # Theoretical Hydropower Potential Republic of Senegal: 253 MW | Theoretical Hydropower Potential of Rivers in the Republic of Senegal | | | |-------------------------------------------------------------------------------------------------------|--------|--| | Pico/micro/mini HPP | 1 MW | | | Small HPP | 4 MW | | | Medium/large HPP | 60 MW | | | No attractive potential | 188 MW | | | Total of all rivers in country | 253 MW | | | Total of rivers with attractive theoretical potential for pico/micro/mini, small, or medium/large HPP | 65 MW | | ## **Longitudinal Profiles of Selected Rivers** The following graphs show longitudinal profiles of the Gambia, Senegal and Faleme rivers, plotting elevation (red) and mean annual discharge (blue) from the source to the mouth of the river. Inflow from tributaries is clearly identifiable as sudden increase in river discharge. The background color indicates if a river reach has an attractive theoretical hydropower potential for pico/micro/mini HPP (< 1 MW installed capacity), small HPP (1-30 MW installed capacity), or medium/large HPP (> 30 MW installed capacity). ### **Hydropower Potential in Selected Sub-catchments** The following map and table give information about the theoretical hydropower potential of a selected sub-catchment in the south of the Republic of Senegal. Also the Faleme River at the eastern border with Mali shows some theoretical hydropower potential, whereas the Senegal River at the northern border with Mauretania has a rather flat slope with limited hydropower potential. The table data summarizes the total theoretical hydropower potential of all river reaches within the sub-catchment. River reaches were grouped according to preferred plant size for pico/micro/mini HPP (< 1 MW installed capacity), small HPP (1-30 MW installed capacity), or medium/large HPP (> 30 MW installed capacity). Similarly, the color code of the river network displayed in the maps indicates the preferred plant size. A grey color indicates no attractive potential for hydropower development. Country border Medium/large HPP # Theoretical Hydropower Potential of Rivers in Sub-Catchment #281 | Pico/micro/mini HPP | 0.5 MW | |---------------------|---------| | Small HPP | 5.1 MW | | Medium/large HPP | 27.4 MW | This sub-catchment of the Gambia River is located downstream of the Sambangalou HPP dam site. In this sub-catchment the Gambia River has some potential for medium/large HPP, but the river is adjacent to the Parc National du Niokolo-Koba. Some potential for small HPP is located at a southern tributary, which crosses the border with Guinea. # River network showing preferred hydropower plant size — Pico/micro/mini HPP ----- Small HPP — Medium/large HPP —— No attractive potential #### Map overlays Existing hydropower plant Lake or reservoir Sub-catchment boundary Country border # **CLIMATE CHANGE** Climate change may have considerable impact on future water resources and thus hydropower generation. The following figures show an assessment of climate change projections for West Africa based on 15 Regional Climate Models of the CORDEX-Africa ensemble. Two Representative Concentration Pathways (RCP4.5 and RCP8.5) were considered, thus yielding a total of 30 climate model runs. Future runoff was simulated by driving a water balance model with precipitation and temperature climate change signals with respect to the reference period 1998-2014. # **Projections for the Near Future 2026-2045** ### **Projections for the Far Future 2046-2065** The maps below show the expected impact of climate change on future mean annual water resources. From the 30 climate model runs the median result was computed to generate the maps, which show change signals comparing the future periods 2026-2045 (previous page) and 2046-2065 (this page) vs. the reference period 1998-2014. In large parts of West Africa increase or almost no change is projected for future precipitation. However, in Senegal future precipitation is projected to considerably decrease. The combined effects of future precipitation and considerable warming (which affects evapotranspiration) were simulated with a water balance model to compute future runoff. In Senegal a decrease is projected for future runoff (median of 30 model runs). This decrease is not as strong for river discharge, as the major rivers have their source in Guinea where future precipitation is projected to increase. Copyright © Pöyry Energy GmbH, ECREEE (www.ecowrex.org) ## **Projected Change in Discharge for Selected Gauges** Future mean annual discharge was estimated with data from 30 different climate model runs. Boxplots are presented to summarize the spread in the simulation results (see explanation at right). For rivers in the Republic of Senegal the uncertainty in the climate model projections is rather high, as both increase and decrease is projected by different climate models for the same river. For the Gambia, Senegal and Faleme rivers there is a tendency of climate models to project a decrease in future discharge. The uncertainty is larger for the Gambia River (larger size of the boxplot) than for the Senegal River (smaller size of the boxplot). Overall the climate change impact assessment shows that given the projections with the most detailed climate models currently available (CORDEX-Africa) future discharge is expected to decrease. This would have negative effects on hydropower development in Senegal. # Boxplot summarizing projections with 30 climate model runs Period #### **ACKNOWLEDGEMENTS** This study was conducted by Pöyry Energy GmbH (Vienna, Austria) for the ECOWAS Centre for Renewable Energy and Energy Efficiency (ECREEE, Praia, Cabo Verde). This is a contribution to the ECOWAS Small-Scale Hydro Power Program, which aims to develop the small-scale hydropower sector in West Africa and is funded by the Austrian Development Agency (ADA) and the Spanish Agency for International Development Cooperation (AECID). Observed discharge data were used for hydrological model calibration and were obtained from the following sources: Global Runoff Data Centre (GRDC), Volta Basin Authority, Niger Basin Authority, Senegal & Gambia Basin Authorities (OMVS, OMVG), Liberia National Hydrological Service, Sierra Leone National Hydrological Service, Japan International Cooperation Agency (JICA). Precipitation data 1998-2014 are based on Tropical Rainfall Measurement Mission (TRMM 3B42 v7). Additional precipitation data 1950-2010 for model calibration were obtained from the Global Precipitation Climatology Centre (GPCC). Air temperature and potential evapotranspiration data were obtained from the Climatic Research Unit (CRU, Univ. East Anglia), with additional data from the CLIMWAT database of FAO. River network and elevation data were derived from the Hydrosheds dataset (USGS). Climate model data were obtained from the Coordinated Regional Downscaling Experiment for Africa (CORDEX-Africa), which is a project of the World Climate Research Program. The delineation of climate zones is based on: L'Hôte Y, Dubreuil P, Lerique J. 1996. *Carte des types de climats en Afrique Noire à l'ouest du Congo. Rappels, et extension aux régimes hydrologiques*. In: L'hydrologie tropicale: géoscience et outil pour le développement (Actes de la conférence de Paris, mai 1995). IAHS Publ. no. 238, p. 55-65 More information about the general methodology for the GIS hydropower resource mapping is available in: Kling H, Stanzel P, Fuchs M. 2016. *Regional assessment of the hydropower potential of rivers in West Africa*. Energy Procedia, Elsevier, Special Issue of ERE, 8 pp. Copyright © Pöyry Energy GmbH, ECREEE (www.ecowrex.org)